Courses in English

Course Description

Department 07 Computer Science and Mathematics

Course title Uncertainty Quantification - Fundamentals

Hours per week (SWS) 4

Number of ECTS credits 5

Course objective

The students are able to

- deal with terms of Uncertainty Quantification (UQ),
- to select methods in a target-oriented manner and to apply them to solve various problems with uncertainties.
- to combine theoretical and application-oriented aspects,
- to reflect and discuss different views,
- demonstrate their acquired skills by working independently on real-life examples.

Students practice and improve their social and communication skills

- by discussing their own points of view,
- group work.

Prerequisites

Mathematical Competencies:

Students know the main contents of the following mathematical courses and will be able to apply the methods learned in them:

- Calculus
- Linear algebra
- Differential calculus and differential equations
- Probability and statistics
- Numerics of ODEs (a numerics class could be taken in parallel)

Digital Competencies:

Students have programming skills - preferably in Python.

Recommended reading

General:

- R. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, 2014
- T. Sullivan, Introduction to Uncertainty Quantification, 2015
- J. Tinsley Oden, Foundations of Predictive Computational Science, 2017

Specialized:

- J. Liu, Monte Carlo Strategies in Scientifc Computing, 2008
- A. Saltelli et al., Global Sensitivity Analysis: The Primer, 2008

Teaching methods

- Blackboard, slides, or beamer
- Virtual lectures e.g. via BigBlueButton
- Computer, programming language Python
- Jupyter notebooks, development environments like PyCharm or Visual Studio Code
- Version control systems like Git or SVN
- Moodle

Assessment methods

Assignments

Language of instruction

English

Name of lecturer

Dr. Mario Teixeira Parente

Email

mario.parente@gmx.de

Link

Course content

Students will learn and practice using the following concepts and methods:

- Types and sources of uncertainties or indeterminacies.
- Motivation for investigating them with concrete model examples
- Sampling strategies (e.g. Monte Carlo methods or Latin Hypercube Sampling)
- Sensitivity analysis techniques (e.g. Sobol indices, partial rank correlation coefficients)
- Forward UQ (e.g., propagation of uncertainties using surrogate models)

Students test the methods on independently implemented models from different application areas such as

- biology, mechanics, or epidemiology.

Courses in English Course Description

Remarks